

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Explored routes to unknown polyfluoroorganyliodine hexafluorides, R_FIF₆

Hermann-Josef Frohn^{a,*}, Vadim V. Bardin^b

^a Inorganic Chemistry, University of Duisburg-Essen, Lotharstr. 1, D-47048 Duisburg, Germany
^bN.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia

ARTICLE INFO

Article history: Received 2 July 2010 Accepted 8 July 2010 Available online 15 July 2010

Keywords: Iodine heptafluoride Pentafluorophenyliodine tetrafluoride 1,1,1-Trifluoroethyliodine tetrafluoride Pentafluorophenyldifluoroborane Pentafluorophenyltifluorosilane

Pentafluorophenyldifluoroborane Pentafluorophenyltrifluorosilane Pentafluorophenyltrimethylsilane Pentafluorophenyltetrafluorosilicate anion NMR spectroscopy

ABSTRACT

Two routes to $R_F IF_6$ compounds were investigated: (a) the substitution of F by R_F in IF₇ and (b) the fluorine addition to iodine in R_FIF_4 precursors. For route (a) the reagents $C_6F_5SiMe_3$, $C_6F_5SiF_3$, $[NMe_4][C_6F_5SiF_4]$, $C_6F_5BF_2$, and $1,4-C_6F_4(BF_2)_2$ were tested. $C_6F_5IF_4$ and $CF_3CH_2IF_4$ were used in route (b) and treated with the fluoro-oxidizers IF₇, [O₂][SbF₆]/KF, and K₂[NiF₆]/KF. The observed sidestep reactions in case of routes (a) and (b) are discussed. Interaction of $C_6F_5SiX_3$ (X = Me, F), $C_6F_5BF_2$, 1,4- $C_6F_4(BF_2)_2$ with IF₇ gave exclusively the corresponding ring fluorination products, perfluorinated cyclohexadiene and cyclohexene derivatives, whereas $[NMe_4][C_6F_5SiF_4]$ and IF_7 formed mixtures of $C_6F_nIF_4$ and C_6F_nH compounds (n = 7 and 9). CF₃CH₂IF₄ was not reactive towards the fluoro-oxidizer IF₇, whereas C₆F₅IF₄ formed $C_6F_nIF_4$ compounds (n = 7 and 9). $C_6F_5IF_4$ and $CF_3CH_2IF_4$ were inert towards $[O_2][SbF_6]$ in anhydrous HF. CF₃CH₂IF₄ underwent C-H fluorination and C-I bond cleavage when treated with $K_2[NiF_6]/KF$ in HF. The fluorine addition property of IF_7 was independently demonstrated in case of perfluorohexenes. C₄F₉CF=CF₂ and IF₇ underwent oxidative fluorine addition at -30 °C, and the isomers (CF₃)₂CFCF=CFCF₃ (*cis* and *trans*) formed very slowly perfluoroisohexanes even at 25 °C. The compatibility of IF₇ and selected organic solvents was investigated. The polyfluoroalkanes CF₃CH₂CHF₂ (PFP), CF₃CH₂CF₂CH₃ (PFB), and C₄F₉Br are inert towards iodine heptafluoride at 25 °C while CF₃CH₂Br was slowly converted to CF₃CH₂F. Especially PFP and PFB are new suitable organic solvents for IF₇.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

lodine heptafluoride belongs to the rare types of molecules with a hepta-coordinated central atom. For the first time, it was prepared by Ruff and Keim from the elements in 1930 [1]. Up to date its reactivity is not studied comprehensively. In 1989 some chemical, physical, and spectral (NMR, Raman, IR) data of IF₇ were briefly reviewed [2]. Furthermore fluoride donor/acceptor properties [3–5], the hydrolysis, and fluorine–oxygen substitution reactions with MNO₃ [3] were reported. The structural data of IF₇ were discussed in [6,7]. To our knowledge, the reactivity of IF₇ towards organo compounds and the substitution of fluorine by organyl groups were not investigated.

In the present paper we show the compatibility of selected polyfluorinated alkanes towards iodine heptafluoride and their potential as solvents for IF₇. We report results of the attempted syntheses of the hitherto unknown type of $R_F IF_6$ molecules by two different reaction routes: (a) by F/R_F substitution in IF₇ and (b) by fluorine addition to iodine in $R_F IF_4$ precursors with different fluoro-oxidizers.

2. Results and discussion

2.1. Suitable organic solvents for IF_7 and compatibility of selected polyfluoroalkanes towards IF_7

Iodine heptafluoride is well soluble in 1,1,1,3,3-pentafluoropropane (HFC-245fa) (PFP) (>1.3 mmol or >340 mg per mL at $-70 \degree$ C) as well in 1,1,1,3,3-pentafluorobutane (Solkane[®] 365mfc) (PFB). The colorless solutions could be stored in FEP traps at 25 °C over 40 h without any attack on the polyfluoroalkanes. The inertness towards strong fluoro-oxidizers combined with a wide range of the liquid state of PFB (mp $-36 \degree$ C, bp 40 \degree C) and PFP (mp $-103 \degree$ C, bp 15 \degree C) and a good solubility of many polyfluoroorgano compounds suggest the use of both polyfluoroalkanes as solvents for investigations of the reactivity of IF₇. The content of IF₇ in solution was controlled by ¹⁹F NMR spectrometry at low temperature. The ¹⁹F NMR spectrum of IF₇ in PFP displayed a resonance at 171 ppm which showed a temperature-depending reversible broadening from $\Delta v_{1/2}$ $_{2}$ = 1180 Hz (-90 °C) to 1480 Hz (-70 °C), 5200 Hz (-40 °C), and 6700 Hz (0 $^{\circ}$ C). These data coincide with the reported spectra of IF₇ in CCl₃F (δ (F) = 173.5, $\Delta v_{1/2}$ = 1150 Hz at $-110 \,^{\circ}$ C) [7] and of neat liquid IF₇ (δ (F) = 171, $\Delta v_{1/2}$ = 4100 \pm 300 Hz at 27 °C) [8].

lodine heptafluoride did also not react with C_4F_9Br in PFP (25 °C, 24 h) and reacted very slowly with CF_3CH_2Br , where bromine

^{*} Corresponding author. Tel.: +49 203 379 3310; fax: +49 203 379 2231. *E-mail address*: h-j.frohn@uni-due.de (H.-J. Frohn).

^{0022-1139/\$ –} see front matter \circledcirc 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2010.07.005

carries more partial negative charge, to give CF_3CH_2F (trace after 27 h at 25 °C). After 60 h at 25 °C the quantitative reduction of IF_7 to IF_5 and the formation of polyfluoroethanes CF_3CH_2F and CF_3CH_2F were observed.

2.2. Attempts to synthesize $R_F IF_6$ by F/R_F substitution in IF_7

From our previous systematic investigations of F/R_F substitution reactions in halogen fluorides it was known that BrF_3 [9] and BrF_5 [10] reacted with $C_6F_5SiMe_3$ in CH_2Cl_2 in the presence of the base MeCN to give $C_6F_5BrF_n$ (n = 2, 4). Under similar conditions IF_3 [9] and IF_5 [11] showed no substitution. We have now found that the addition of a pentafluorophenyltrimethylsilane (1) – MeCN (1:3) solution in PFP to a solution of IF_7 in PFP at -60 to -40 °C led to the slow reduction of IF_7 to IF_5 and fluorine addition to the pentafluorophenyl moiety giving heptafluorocyclohexa-1,4-dien-1-yltrimethylsilane (2), nonafluorocyclohexa-1-en-1-yltrimethylsilane (3), nonafluorocyclohexa-1-en-3-yltrimethylsilane (4), nonafluorocyclohexa-1-en-4-yltrimethylsilane (5), octafluorocyclohexa-1,4-diene (6), and decafluorocyclohexa-1-ene (7), besides a trace of Me₃SiF (Scheme 1).

Pentafluorophenyltrifluorosilane (**8**) was a successful reagent for F/C_6F_5 mono-substitution in IF₃ [9], IF₅ [11], BrF₃ [12], and BrF₅ [13] under formation of $C_6F_5HalF_{n-1}$ (n = 3, 5). In case of BrF₃ we were able to show that **8** can also form the di-substitution product [$(C_6F_5)_2Br$]⁺ in reactions with a 1:2 ratio at elevated temperatures [14].

Stirring pentafluorophenyltrifluorosilane (**8**), MeCN, and iodine heptafluoride (1:2:0.8) in a PFP solution at -70 to -40 °C for 1.5 h did not lead to $C_6F_5IF_6$. Instead, a mixture of IF₇ and IF₅ (1:2) together with heptafluorocyclohexa-1,3-dien-1-yltrifluorosilane (**9**), heptafluorocyclohexa-1,4-dien-1-yltrifluorosilane (**10**), nona-fluorocyclohex-1-en-1-trifluorosilane (**11**), 1-H-heptafluorocyclohexa-1,4-diene (**12**), perfluorinated cycloalkenes **6**, **7**, and SiF₄ was formed. Warming up to 0 °C resulted in the complete consumption of IF₇ (Scheme 2). The predominant reactivity of IF₇ was again fluorine addition across the C=C double bonds of the phenyl group.

lodine heptafluoride and a suspension of $[Me_4N][C_6F_5SiF_4]$ in PFP reacted at -30 to 0 °C under fluorine addition to the aromatic

ring too, but the perfluorinated cycloalkenyltrifluorosilanes **9**, **10**, and **11** were not formed. Instead, the perfluorocycloalkenyliodine tetrafluorides **14** and **15** were found together with 1-H-poly-fluorocycloalkenes **12** and **13**, the perfluorinated cycloalkenes **6** and **7**, and iodine pentafluoride (Scheme 3).

Principally, the formation of **14** and **15** from $C_6F_5IF_6$ cannot be excluded, but it seems more likely that they were formed by alternative routes. Thus, the fluorination of $[C_6F_5SIF_4]^-$ by IF_7 led to $[cyclo-C_6F_nSIF_4]^-$ (n = 7, 9) and IF_5 . IF_5 can then react by two channels. IF_5 and $[C_6F_5SIF_4]^-$ give $C_6F_5IF_4$ [15] which can be fluorinated by IF_7 (see below) to **14** and **15** (Scheme 7). Alternatively, compounds **14** and **15** can be produced from $[cyclo-C_6F_nSIF_4]^-$ and IF_5 . The remarkable quantity of hydrogencontaining cycloalkenes **12** and **13** is explained by a transformation of **14** and **15** under the influence of fluoride ions [16].

During the last decade we have successfully used pentafluorophenyldifluoroborane (16) as a pentafluorophenyl transfer reagent for the preparation of pentafluorophenyliodonium(III, V), pentafluorophenylbromonium(III) [17,18,14], and pentafluorophenylxenonium(II, IV) [19] salts. Based on this experience borane 16 seemed to offer a promising route to first types of up to now unknown organyliodine(VII) compounds. Thus we studied the reaction of 16 with iodine heptafluoride. We have found that after addition of **16** in PFP to an equimolar amount of IF₇ in PFP at $-60 \degree C$ only ring fluorination resulted and no hint on C₆F₅IF₆ was obtained (Scheme 4). Besides IF₅, heptafluorocyclohexa-1,3-dien-1-yldifluoroborane (17), heptafluorocyclohexa-1,4-dien-1-yldifluoroborane (18), and nonafluorocyclohex-1-en-1-vldifluoroborane (19), in addition to a significant amount of BF₃, the perfluorinated diene 6 and alkene 7 were formed. In contrast to the reaction with $[C_6F_5SiF_4]^-$, perfluorocycloalkenyliodine tetrafluorides **20**, **14**, and 15 were not found in the reaction solution after several days at 25 °C. This fact allows to conclude that no slow substitution of the BF₂ group by IF₄ proceeded as consecutive reaction between perfluoroalkenyl(difluoro)boranes and IF₅.

To reduce the probability of fluorine addition to the aromatic moiety, we included tetrafluorophenylen-1,4-bis(difluoroborane) (**21**) in our F/R_F investigations. Borane **21** contains two strong electron-withdrawing BF₂ groups ($\sigma_1(BF_2) = 0.15$, $\sigma_R(BF_2) = 0.30$

Scheme 4.

Scheme 5.

[20]). Nevertheless, after addition of an equimolar amount of **21** to IF₇ in PFP at -60 °C we have found again fluorine addition to the double bonds instead of F/R_F substitution. Hexafluorocyclohexa-1,3-dienylen-1,4-bis(difluoroborane) (**22**) and hexafluorocyclohexa-1,4-dienylen-1,4-bis(difluoroborane) (**23**) were formed in quantitative yields (Scheme 5).

Under the action of a second equivalent of IF_7 , the conjugated isomer **22** was converted into cycloalkenyldifluoroborane **19**, cycloalkene **7**, and boron trifluoride (Scheme 6).

When the reaction solution was kept at 25 °C over a period of 4 days, 1,4-diene **23** isomerized to 1,3-diene **22**.

Why did the pentafluorophenyl transfer not proceed in IF₇? The experimental facts with IF₇ argue for a fast fluorine addition to the aryl-transfer reagent and a low rate for the F/C_6F_5 substitution in IF₇. Indeed, we can deduce a slow F/C_6F_5 substitution in IF₇ relative to iodine(III) and iodine(V) fluorides based on the following examples. The rate of F/C_6F_5 substitution in $C_6F_5IF_n$ with $C_6F_5BF_2$ in CH₂Cl₂ decreases from n = 2 [21] to n = 4 [22] (Eqs. (1) and (2)).

$$C_{6}F_{5}IF_{2} + C_{6}F_{5}BF_{2} \frac{CH_{2}CL_{2}}{20^{\circ}C, 0.5 h} [(C_{6}F_{5})_{2}l][BF_{4}]$$
(1)

$$C_{6}F_{5}IF_{4} + C_{6}F_{5}BF_{2} \frac{CH_{2}Cl_{2}}{16-20°C, 70h} [(C_{6}F_{5})_{2}IF_{2}][BF_{4}]$$

$$(2)$$

A similar trend was observed for the F/C_6F_5 substitution in BrF₃, BrF₅, and IF₅ in reactions with silane **8**. The reaction of BrF₃ with $C_6F_5SiF_3$ in CCl₃F was completed within 1 h [12] (Eq. (3)) whereas the aryl transfer to BrF₅ required the presence of MeCN and occurred within 12 h [10,13] (Eq. (4)). The related reaction of IF₅ needed the presence of the stronger base pyridine and more rigid conditions [11] (Eq. (5)).

$$C_{6}F_{5}SiF_{3} + BrF_{3} \underbrace{\overset{CC_{3}F}{\underset{-5 \text{ to } 0^{\circ}C, <1}{\overset{CC_{3}F}{\underset{-5 \text{ to } 0^{\circ}C, <1}{\overset{-5 \text{ to } 0^{\circ}C, <1}{\overset{CC_{3}F$$

$$C_{6}F_{5}SiF_{3} + BrF_{5} \frac{CCIF_{2}CCIF_{2}, 4MeCN}{0 \circ C, 12 h} C_{6}F_{5}BrF_{4} + SiF_{4} \cdot 2MeCN$$
(4)

$$C_6F_5SiF_3 + IF_5 + 2Py \xrightarrow{MeCN}_{20\ c_c, 24h} C_6F_5IF_4 + SiF_4 \cdot 2Py$$

$$\tag{5}$$

2.3. Attempts to synthesize R_FIF_6 by fluorination of iodine in R_FIF_4 precursors

We have included $C_6F_5IF_4$ and $CF_3CH_2IF_4$ in reactions with fluoro-oxidizers with the aim to obtain the corresponding R_FIF_6 molecules. The treatment of pentafluorophenyliodine tetrafluoride (**24**) with IF₇ (1 equiv.) in PFP at -60 to -30 °C did not result in $C_6F_5IF_6$ but fluorine addition across C=C bonds occurred under formation of heptafluorocyclohexa-1,3-dien-1-yliodine tetrafluoride (**16**), heptafluorocyclohexa-1,4-dien-1-yliodine tetrafluoride (**14**), and nonafluorocyclohexa-1-en-1-yliodine tetrafluoride (**15**) (Scheme 7).

A similar ring fluorination of **24** was observed with XeF₂ in the presence of a Lewis acid [23]. Both results indicate (a) that the electron-withdrawing effect of the IF₄ group is not strong enough to protect the C_6F_5 group against such strong fluoro-oxidizers or (b) that the valence electron lone pair of iodine(V) needs a stronger fluoro-oxidizer. If conclusion (b) is true, then this route can be excluded for R_FIF_6 syntheses where R_F contains a C-C multiple bond.

In order to evaluate the influence of the oxidation number of iodine on the preference of channel (a) or (b) in C_6F_5I starting materials we performed the reaction of iodopentafluorobenzene (**25**) (1.6 equiv.) with IF₇ and observed 57% conversion of C_6F_5I to pentafluorophenyliodine difluoride (**26**) and IF₅ (Eq. (6)). No addition of fluorine to the C=C double bond took place.

$$C_{6}F_{5}I + < 1IF_{7} \xrightarrow{\text{PFP}, -40 \text{ to } 0 \,^{\circ}\text{C}} C_{6}F_{5}IF_{2} + IF_{5}$$

$$\tag{6}$$

In order to avoid the reaction channel of fluorine addition to C=C bonds we investigated the reaction of $CF_3CH_2IF_4$ with IF₇. We have found that IF₇ and 2,2,2-trifluoroethyliodine tetrafluoride (**27**) did not react in PFP even at 25 °C over 16 h (Eq. (7)). The unexpected inertness of $CF_3CH_2IF_4$ prompted us to exclude perfluoroalkyliodine tetrafluorides with a more electron-deficient iodine atom from our investigations with IF₇.

$$CF_{3}CH_{2}IF_{4} + IF_{7} \xrightarrow{\text{PFP, 25 °C, 16 h}} \text{no reaction}$$
(7)

In addition to the fluoro-oxidizer IF_7 we investigated selected reactions with $[O_2][SbF_6]$ and $K_2[NiF_6]$ under different conditions. $C_6F_5IF_4$ showed no reactivity towards $[O_2][SbF_6]$ in aHF till 0 °C (Eq. (8)). The inertness of $C_6F_5IF_4$ towards the one-electron-oxidizer

Scheme 6.

 $[O_2]^+$ is in contrast to the easy oxidation of the parent aryl compound C_6F_6 under formation of the radical cation $[C_6F_6]^{++}$ [24].

$$C_6F_5IF_4 + 2[O_2][SbF_6] \xrightarrow{aHF, \leq 0 \circ C}$$
 no reaction (8)

From the work of Bartlett [25] it was known that $[O_2][SbF_6]$ dissolved in "basic" aHF below -50 °C provides the strong radical fluoro-oxidizer O_2F with an O–F bond energy of ~ 13 kcal/mol. When we treated $CF_3CH_2IF_4$ with $[O_2][SbF_6]/KF/aHF$ from -65 to 24 °C no reaction proceeded (Eq. (9)).

$$CF_{3}CH_{2}IF_{4} + 2[O_{2}][SbF_{6}] + 2KF^{aHF,-65 \text{ to } 24^{\circ}C} \text{no reaction}$$
(9)

The same combination of reagents converted CF_3CH_2I at -65 to 0 °C partially into $CF_3CH_2IF_4$ (Eq. (10)).

$$\begin{split} CF_{3}CH_{2}I + 5[O_{2}][SbF_{6}] + &> 5KF \xrightarrow[partial conversion]{aHF,-65 to 0 \ ^{\circ}C} CF_{3}CH_{2}IF_{4} \\ &+ 5O_{2} + 5K[SbF_{6}] \end{split} \tag{10}$$

Finally, we reacted $CF_3CH_2IF_4$ with $K_2[NiF_6]$ in "basic" aHF. At 0 °C we observed the splitting of the C–I bond by fluorination and formation of CF_3CH_2F and IF_5 . In a smaller extent also one C–H bond was fluorinated (formation of CF_3CHF_2) (Scheme 8).

2.4. Verification of the fluorine addition property of IF_7 exemplified by using a "non" polarized C=C double bond

All aforementioned fluorine additions to the C_6F_5 moiety were influenced by the substituent at carbon-1: SiF₃, BF₂, IF₄ groups as electron-withdrawing substituents or SiMe₃ and SiF₄⁻ as electronpushing substituents. We have chosen two constitutional isomers of perfluorohexene in order to test the fluorine addition property of IF₇ to a "non" polarized C=C bond.

No reaction between iodine heptafluoride and perfluorohex-1ene (**28**) was detected in PFP at -60 °C within 2 h, but at -30 °C fluorine addition across the terminal C=C bond took place forming perfluorohexane (**29**) (Eq. (11)). Under the same conditions, the isomer perfluoro-4-methylpent-2-ene (**31**) with an internal C=C bond was not fluorinated by IF₇. A slow conversion of both *cis*-**31** and *trans*-**31** to perfluoroisohexane (**33**) proceeded at 24 °C and was completed after 60 h (Eq. (12)). It is noteworthy that during the long-term reaction in a FEP trap the fluorine addition was accompanied by the formation of minor by-products (CF₃)₂CFCOF, CF₃COF (derived from **31**) and (CF₃)₂CO and C₂F₅COF (derived from the isomer (CF₃)₂C=CFC₂F₅). Probably, the slow formation of oxygen-containing products was caused by water vapor which diffused through the 0.35 mm fluoropolymer wall.

$$C_{4}F_{9}CF_{2} = CF_{2} + IF_{7} \xrightarrow{\text{PFP}, -30\,^{\circ}\text{C}, 2\,\text{h}} C_{6}F_{14} + IF_{5}$$
(11)

$$(CF_3)_2 CFCF = CFCF_3 + IF_7 \xrightarrow{\text{PFP}, 24^{\circ}C, 60\text{ h}} (CF_3)_2 CFC_3F_7 + IF_5$$
(12)
31(cis:trans=12.88)
33 (12)

3. Experimental

3.1. General

The NMR spectra were recorded on a Bruker AVANCE 300 spectrometer (300.13 MHz, ¹H; 282.40 MHz, ¹⁹F; 96.29 MHz, ¹¹B; 75.47 MHz, ¹³C). The chemical shifts are referenced to TMS (¹H, ¹³C), BF₃·OEt₂/CDCl₃ (15%, v/v) (¹¹B), and CCl₃F (¹⁹F, with C₆F₆ as secondary reference (-162.9 ppm)), respectively. The composition of reaction mixtures and the yields of products were determined by ¹⁹F NMR spectroscopy using the internal integral standards C₆F₆, C₄F₉Br, or PFB.

Products *cyclo*-1,3-C₆F₇-1-IF₄ (**20**), *cyclo*-1,4-C₆F₇-1-IF₄ (**14**), and *cyclo*-1-C₆F₉-1-IF₄ (**15**) [23], *cyclo*-1,3-C₆F₇-1-SiF₃ (**9**), *cyclo*-1,4-C₆F₇-1-SiF₃ (**10**), *cyclo*-1,4-C₆F₇-1-SiMe₃ (**2**), *cyclo*-1-C₆F₉-1-SiF₃ (**11**), *cyclo*-1-H-1,4-C₆F₇ (**12**), *cyclo*-1,4-C₆F₈ (**6**), [26], *cyclo*-1-C₆F₉-1-SiMe₃ (**3**) [27], and *cyclo*-1-H-1-C₆F₉ (**13**) [28] were identified by ¹⁹F NMR spectroscopy.

1,1,1,3,3-Pentafluoropropane (PFP) (Honeywell), 1,1,1,3,3-pentafluorobutane (PFB) (Solvay), and CCl₃F (K11, Solvay) were stored over molecular sieves 3 Å before use. Boron trifluoride (Air Liquide), C₆F₅I (Bristol Organics), CF₃CH₂I (**30**) (Acros), (CF₃)₂CFCF=CFCF₃ (**31**) (ABCR) were used as supplied. Acetonitrile (Baker) and dichloromethane (Baker) were purified and dried as described in Ref. [29]. Anhydrous HF (aHF) was stored over CoF₃. Compounds CF₃CH₂Br (**32**) [30], C₄F₉CF=CF₂ [31], C₆F₅SiF₃ (**8**) [32], C₆F₅SiH₃ (**1**) [33], C₆F₅IF₄ (**24**) [34], [Me₄N]F [35], PFP solutions of C₆F₅BF₂ [18] and of 1,4-C₆F₄(BF₂)₂ [36] were prepared as described. IF₇ was obtained from E. Jacob and stored in a Monel cylinder with a Monel valve, [O₂][SbF₆] from B. Müller, and K₂[NiF₆]·KF from H. Willner.

All manipulations were performed in FEP (block copolymer of tetrafluoroethylene and hexafluoropropylene) or PFA (block copolymer of tetrafluoroethylene and perfluoroalkoxyethylene) equipment under an atmosphere of dry argon.

3.2. Preparation of CF₃CH₂IF₄

(A) Xenon difluoride (352 mg, 2.08 mmol), PFB (2 mL) and CF₃CH₂I (200 mg, 0.95 mmol) were loaded in a 11.7-mm i.d. PFA trap equipped with a magnetic stir bar. The solution was cooled to -10 °C and BF₃ was bubbled under stirring at -10 °C for 2 min and at 20 °C for 40 min. The ¹⁹F NMR spectrum showed the formation of CF₃CH₂IF₄. The signals of XeF₂ and CF₃CH₂I were absent. Volatiles were evaporated at 20 °C under reduced pressure to give CF₃CH₂IF₄ (216 mg, 0.76 mmol, 79%) (white solid).

(B) CF₃CH₂I (117 mg, 0.55 mmol) and aHF (2 mL) were loaded in a 11.7-mm i.d. PFA trap equipped with a magnetic stir bar. The emulsion was cooled to 0 °C before a solution of XeF₂ (233 mg, 1.37 mmol) in aHF (0.5 mL) was added in portions. The mixture was stirred at 10–12 °C for 15 min and the excess of XeF₂ was quenched by the addition of C₆F₆. All volatiles were removed at 20 °C in vacuum. The residue was washed with pentane and dried in vacuum to give CF₃CH₂IF₄ in >90% yield.

CF₃CH₂IF₄. ¹H NMR (PFB, 24 °C): δ 4.86 (q ³*J*(H¹, F²) = 9 Hz, 2H, H¹). ¹H NMR (aHF, 0 °C): δ 4.90 (q ³*J*(H¹, F²) = 9 Hz, 2H, H¹). ¹⁹F NMR (PFP, 24 °C): δ -19.9 (t ³*J*(IF₄, H¹) = 5 Hz, q ⁴*J*(IF₄, F²) = 9 Hz, 4F, IF₄), -59.6 (t ³*J*(F², H¹) = 9 Hz, quin ⁴*J*(F², IF₄) = 9 Hz, 3F, F²). ¹⁹F NMR (aHF, 0 °C): δ -23.2 (s, $\Delta \nu_{1/2}$ = 47 Hz, 4F, IF₄), -58.6 (t ³*J*(F², H¹) = 9 Hz, 3F, F²). ¹³C{¹⁹F} NMR (PFB, 24 °C): δ 121.0 (t ²*J*(C-2, H¹) = 6 Hz, C-2), 75.4 (t ¹*J*(C-1, H¹) = 152 Hz, C-1).

3.3. Reaction of IF₇ with 2-bromo-1,1,1-trifluoroethane

A cold $(-65 \degree C)$ solution of CF₃CH₂Br (0.10 mmol) in PFP (0.15 mL) was added to a cold $(-65 \degree C)$ solution of IF₇ (0.10 mmol)

in PFP (0.30 mL). The solution was stirred at -60 °C for 2 h, at 25 °C for 16 h (without reaction, ¹⁹F NMR) and for additional 27 h (trace of CF₃CH₂F). After 60 h at 25 °C the red solution contained IF₅ (0.10 mmol), CF₃CH₂Br (0.01 mmol), CF₃CH₂F (0.08 mmol), and CF₃CHF₂ (0.01 mmol) (PFB as internal integral standard, ¹⁹F NMR).

3.4. Attempts to substitute fluorine by pentafluorophenyl groups in IF_7

3.4.1. Reaction of IF_7 with pentafluorophenyltrimethylsilane

Cold $(-45 \,^{\circ}\text{C})$ solutions of CH₃CN (15 mg, 0.36 mmol) and C₆F₅SiMe₃ (**1**) (29 mg, 0.12 mmol) in PFP (each 0.4 mL) were added to a cold $(-70 \,^{\circ}\text{C})$ solution of IF₇ (0.10 mmol) in PFP (0.25 mL). The solution was stirred for 0.5 h at $-60 \,^{\circ}\text{C}$ and at $-40 \,^{\circ}\text{C}$. The ¹⁹F NMR spectrum $(-40 \,^{\circ}\text{C})$ showed signals of IF₇ (too broad for integration), IF₅, **2**, **3**, **6**, **7**, **4**, **5** (189:45:17:2:4:15:21) and Me₃SiF (trace). Stirring at 0–6 $\,^{\circ}\text{C}$ for 13 h led to the complete reduction of IF₇ to IF₅ and the corresponding changes in the molar ratio of products: IF₅, **2**, **3**, **6**, **7**, **4**, **5**, and Me₃SiF (217:26:22:3:4:15:29:8).

 $\begin{array}{l} cyclo-1-C_{6}F_{9}\text{-}3\text{-}SiMe_{3} \ \textbf{(4)}. \ ^{19}\text{F} \ \text{NMR} \ (\text{PFP}): \ \delta \ -109.8 \ (d \ ^{2}\textit{J}(\text{F}^{6A}, \text{F}^{6B}) = 280 \ \text{Hz}, \ 1\text{F}, \ \text{F}^{6A}), \ -115.2 \ (d \ ^{2}\textit{J}(\text{F}^{6B}, \text{F}^{6A}) = 280 \ \text{Hz}, \ 1\text{F}, \ \text{F}^{6B}), \\ -122.4 \ (d \ ^{2}\textit{J}(\text{F}^{4A}, \ \text{F}^{4B}) = 270 \ \text{Hz}, \ 1\text{F}, \ \text{F}^{4A}), \ -141.2 \ (d \ ^{2}\textit{J}(\text{F}^{4B}, \text{F}^{5A}) = 280 \ \text{Hz}, \ 1\text{F}, \ \text{F}^{6A}), \\ -128.0 \ (d \ ^{2}\textit{J}(\text{F}^{5B}, \text{F}^{5A}) = 280 \ \text{Hz}, \ 1\text{F}, \ \text{F}^{5B}) = 280 \ \text{Hz}, \ 1\text{F}, \ \text{F}^{5A}), \\ -128.0 \ (d \ ^{2}\textit{J}(\text{F}^{5B}, \text{F}^{5A}) = 280 \ \text{Hz}, \ 1\text{F}, \ \text{F}^{5B}), -129.0 \ (d \ ^{3}\textit{J}(\text{F}^{2}, \text{F}^{1}) = 9 \ \text{Hz}, \\ d \ ^{4}\textit{J}(\text{F}^{2}, \ \text{F}^{6A}) = 12 \ \text{Hz}, \ d \ ^{3}\textit{J}(\text{F}^{2}, \ \text{F}^{3}) = 32 \ \text{Hz}, \ 1\text{F}, \ \text{F}^{2}), \ -155.4 \ (d \ ^{3}\textit{J}(\text{F}^{1}, \text{F}^{2}) = 9 \ \text{Hz}, \ d \ ^{4}\textit{J}(\text{F}^{1}, \text{F}^{3}) = 12 \ \text{Hz}, \ t \ ^{3}\textit{J}(\text{F}^{1}, \text{F}^{6A, 6B}) = 19 \ \text{Hz}, \ 1\text{F}, \text{F}^{1}), \ -186.8 \ (\text{m}, \ d \ ^{4}\textit{J}(\text{F}^{3}, \text{F}^{1}) = 12 \ \text{Hz}, \ d \ ^{3}\textit{J}(\text{F}^{3}, \text{F}^{2}) = 32 \ \text{Hz}, \ 1\text{F}, \ \text{F}^{3}). \end{array}$

 $\begin{array}{l} cyclo-1-C_{6}F_{9}\text{-}4\text{-}SiMe_{3}\ (\textbf{5}). \ ^{19}F\ NMR\ (PFP):\ \delta\ -105.8\ (d\ ^{2}\textit{J}(F^{6A}, F^{6B}) = 282\ Hz,\ 1F,\ F^{6A}),\ -126.1\ (m,\ d\ ^{2}\textit{J}(F^{6B},\ F^{6A}) = 282\ Hz,\ d\ ^{4}\textit{J}(F^{6B}, F^{2}) = 15\ Hz,\ d\ ^{3}\textit{J}(F^{6B},\ F^{1}) = 28\ Hz,\ 1F,\ F^{6B}),\ -99.7\ (d\ ^{2}\textit{J}(F^{3A}, F^{3B}) = 303\ Hz,\ 1F,\ F^{3A}),\ -110.2\ (d\ ^{2}\textit{J}(F^{3B},\ F^{3A}) = 303\ Hz,\ 1F,\ F^{3B}),\ -110.2\ (d\ ^{2}\textit{J}(F^{3B},\ F^{3A}) = 303\ Hz,\ 1F,\ F^{3B}),\ -112.5\ (m,\ d\ ^{2}\textit{J}(F^{5A},\ F^{5B}) = 288\ Hz,\ 1F,\ F^{5A}),\ -124.3\ (m,\ d\ ^{2}\textit{J}(F^{5B},\ F^{5A}) = 288\ Hz,\ 1F,\ F^{5B}),\ -151.8\ (m,\ d\ ^{4}\textit{J}(F^{2},\ F^{6A}) = 9.5\ Hz,\ d\ ^{4}\textit{J}(F^{2},\ F^{6B}) = 15\ Hz,\ d\ ^{3}\textit{J}(F^{2},\ F^{3A}) = 20\ Hz,\ d\ ^{3}\textit{J}(F^{2},\ F^{3B}) = 24\ Hz,\ 1F,\ F^{2}),\ -200.1\ (m,\ 1F,\ F^{4}). \end{array}$

3.4.2. Reaction of IF₇ with pentafluorophenyltrifluorosilane

A cold (-70 °C) solution of CH₃CN (12 mg, 0.29 mmol) in PFP (0.1 mL) and a cold (-40 °C) solution of C₆F₅SiF₃ (**8**) (34 mg, 0.13 mmol) in PFP (0.2 mL) were added in sequence to a cold (-70 °C) solution of IF₇ (0.10 mmol) in PFP (0.25 mL). The solution was stirred at -70 °C for 0.5 h and at -40 °C for 1 h. The ¹⁹F NMR spectrum (-40 °C) showed signals of IF₇ and IF₅ (59:131), **9**, **10**, **11**, **6**, **7**, **12**, and SiF₄ (12:62:12:1:8:5:7). Stirring at 0 °C for 15 h resulted in the complete reduction of IF₇ to IF₅ accompanied by the corresponding changes in the molar ratio of products: **9**, **10**, **11**, **6**, **7**, **12**, and SiF₄ (0:36:36:1:9:3:9).

3.4.3. Reaction of IF_7 with $[Me_4N][C_6F_5SiF_4]$

A cold ($-35 \,^{\circ}$ C) solution of C₆F₅SiF₃ (40 mg, 0.157 mmol) in PFP (0.3 mL) was added to a cold ($-70 \,^{\circ}$ C) solution of [Me₄N]F (18 mg, 0.193 mmol) in PFP (1.5 mL). A white suspension was formed which was stirred at $-30 \,^{\circ}$ C for 25 min before a cold ($-35 \,^{\circ}$ C) solution of IF₇ (0.158 mmol) in PFP (0.15 mL) was added in one portion. The suspension was stirred at $-30 \,^{\circ}$ C for 1 h and at 0 $\,^{\circ}$ C for 2 h before the colorless mother liquor was decanted. The precipitate (presumably, [Me₄N]₂[SiF₆]) was washed with PFB (1 mL). The ¹⁹F NMR spectrum (0 $\,^{\circ}$ C) of the combined PFB solutions showed signals of **14**, **15**, **6**, **7**, **12**, and **13** (molar ratio 9:13:15:18:27:18) and unknown non-aromatic perfluoro compounds. Iodine heptafluoride was quantitatively converted into IF₅ (¹⁹F NMR).

3.4.4. Reaction of IF₇ with pentafluorophenyldifluoroborane

A cold $(-60 \degree C)$ solution of $C_6F_5BF_2$ (0.12 mmol) in PFP (0.25 mL) was added to a cold $(-60 \degree C)$ stirred solution of IF_7 (0.15 mmol) in PFP (0.3 mL). The solution was stirred at $-60 \degree C$

for 1 h. The ¹⁹F NMR spectrum ($-60 \,^{\circ}$ C) contained signals of IF₅, BF₃, **6**, **7**, and broadened resonances of **17**, **18**, and **19** in the molar ratio 200:40:3:20:4:49:7 (C₄F₉Br as internal integral standard). Further stirring at 25 °C for 24 h led to the loss of BF₃ whereas the quantities of the other products were not changed. Now the fine structure of the ¹⁹F resonances of perfluorocy-cloalkenyldifluoroboranes **17**, **18**, and **19** became available for analysis.

cyclo-1,3-C₆F₇-1-BF₂ (**17**). ¹⁹F NMR (PFP): δ -74.3 (s, $\Delta \nu_{1/2}$ = 72 Hz, BF₂), -93.4 (d ³J(F², F³) = 16 Hz, t ⁴J(F², F⁶) = 16 Hz, 1F, F²), -112.8 (m, d ⁴J(F⁶, F²) = 16 Hz, 2F, F⁶), -123.9 (m, 2F, F⁵), -147.1 (t ⁵J(F³, F⁶) = 5 Hz, d ³J(F³, F²) = 16 Hz, t ⁴J(F³, F⁵) = 19 Hz, 1F, F³), -150.1 (m, t ³J(F⁴, F⁵) = 17 Hz, 1F, F⁴). ¹¹B NMR (PFP): δ 21 (s, $\Delta \nu_{1/2}$ = 76 Hz, BF₂).

cyclo-1-BF₂-1,4-C₆F₇ (**18**). ¹⁹F NMR (PFP): δ -74.3 (s, $\Delta \nu_{1/2}$ = 72 Hz, 2F, BF₂), -98.2 (t ⁵*J*(F⁶, F³) = 5 Hz, d ⁴*J*(F⁶, F²) = 11 Hz, d ⁴*J*(F⁶, F⁴) = 11 Hz, d ³*J*(F⁶, F⁵) = 20 Hz, 2F, F⁶), -102.4 (t ⁴*J*(F², F⁶) = 11 Hz, t ³*J*(F², F³) = 22 Hz, 1F, F²), -112.3 (t ⁵*J*(F³, F⁶) = 4 Hz, d ³*J*(F³, F²) = 22 Hz, d ⁴*J*(F³, F⁵) = 11 Hz, d ³*J*(F³, F⁴) = 19 Hz, 2F, F³), -150.9 (d ⁵*J*(F⁵, F²) = 2 Hz, d ³*J*(F⁵, F⁴) = 4 Hz, t ⁴*J*(F⁵, F³) = 11 Hz, t ³*J*(F⁵, F⁶) = 20 Hz, 1F, F⁵), -158.1 (d ⁴*J*(F⁴, F²) = 2 Hz, d ³*J*(F⁴, F⁵) = 4 Hz, t ⁴*J*(F⁴, F⁶) = 11 Hz, t ³*J*(F⁴, F³) = 19 Hz, 1F, F⁴). ¹¹B NMR (PFP): δ 21.1 (s, $\Delta \nu_{1/2}$ = 76 Hz, BF₂).

cyclo-1-BF₂-1-C₆F₉ (**19**). ¹⁹F NMR (PFP), δ –74.3 (s, $\Delta \nu_{1/2}$ = 72 Hz, 2F, BF₂), -98.4 (m, 1F, F²), -103.8 (m, 2F, F⁶), -119.8 (m, d ³*J*(F³, F²) = 22 Hz, 2F, F³), -133.5 (m, 2F, F⁴), -133.2 (m, 2F, F⁵). ¹¹B NMR (PFP): δ 21.1 (s, $\Delta \nu_{1/2}$ = 76 Hz, BF₂).

3.4.5. Reaction of IF₇ with tetrafluorophenylen-1,4-

bis(difluoroborane)

A cold (-65 °C) solution of 1,4-C₆F₄(BF₂)₂ (0.08 mmol) in PFP (1 mL) was added to a cold (-65 °C) stirred solution of IF₇ (0.08 mmol) in PFP (0.4 mL). The solution was stirred at -60 °C for 1 h. The ¹⁹F NMR spectrum (-60 °C) contained signals of IF₅, **22**, and **23** in the molar ratio 100:30:60 (C₄F₉Br as internal integral standard). A second portion of IF₇ (0.08 mmol) in PFP (0.4 mL) was added at -60 °C. After stirring for 1 h at -60 °C and at -40 °C, the ¹⁹F NMR spectrum (-40 °C) showed resonances of IF₅, **23**, **19**, and **7** in the molar ratio 240:30:7:13. No remarkable changes were observed in the ¹⁹F NMR spectru of the solution after 9 h at 25 °C, although in the ¹¹B NMR spectra now BF₃ (9.2 ppm) appeared. On long standing at 25 °C (\geq 4 days), **23** isomerized to **22** while the other products remained unchanged.

cyclo-1,3-C₆F₆-1,4-(BF₂) (**22**). ¹⁹F NMR (PFP, -60 °C): δ -75.1 (s, $\Delta \nu_{1/2}$ = 330 Hz, 4F, BF₂), -96.3 (t ⁴*J*(F², F⁶) and ⁴*J*(F³, F⁵) = 16 Hz, 2F, F^{2.3}), -113.8 (d ⁴*J*(F⁶, F²) and ⁴*J*(F⁵, F³) = 16 Hz, 4F, F^{5.6}). ¹¹B NMR (PFP, -60 °C): δ 20.4 (s, $\Delta \nu_{1/2}$ = 360 Hz, BF₂).

cyclo-1,4-C₆F₆-1,4-(BF₂) (**23**). ¹⁹F NMR (PFP, -60 °C): δ -75.1 (s, $\Delta \nu_{1/2}$ = 330 Hz, 4F, BF₂), -98.1 (t ⁴J(F², F⁶) and ⁴J(F⁵, F³) = 11 Hz, t ³J(F², F³) and ³J(F⁵, F⁶) = 22 Hz, 2F, F^{2.5}), -99.0 (d ³J(F³, F²) and ³J(F⁶, F⁵) = 22 Hz, d ⁴J(F³, F⁵) and ⁴J(F⁶, F²) = 11 Hz, 4F, F^{5.6}). ¹¹B NMR (PFP, -60 °C): δ 20.4 (s, $\Delta \nu_{1/2}$ = 360 Hz, BF₂).

3.5. Attempts to fluorinate iodine in polyfluoroorganyliodine compounds

3.5.1. Reaction of pentafluorophenyliodine tetrafluoride with IF_7

A cold ($-60 \degree$ C) solution of IF₇ (0.15 mmol) in PFP (0.3 mL) was added to a cold ($-60 \degree$ C) stirred fine suspension of C₆F₅IF₄ (**24**) (54 mg, 0.145 mmol) in PFP (0.4 mL). The reaction mixture was stirred at -60 to $-20 \degree$ C with periodic control of composition by ¹⁹F NMR spectroscopy (PFB as internal integral standard). The molar ratio of IF₅:**20:14:15:24** was 60:22:27:0:192 (20% conversion, $-60 \degree$ C, 1.5 h), 107:40:48:0:152 (36% conversion, $-40 \degree$ C, 1 h), 177:63:78:4:90 (62% conversion, $-40 \degree$ C, 3 h), and 270:88:115:14:16 (93% conversion, $-40 \degree$ C, 12 h).

3.5.2. Reaction of iodopentafluorobenzene (excess) with IF₇

A cold (-50 °C) solution of IF₇ (0.10 mmol) in PFP (0.40 mL) was added to a cold (-45 °C) solution of C₆F₅I (48 mg, 0.163 mmol) in PFP (0.20 mL). Immediately a white precipitate was formed. The suspension was stirred at -40 °C for 40 min and at 0 °C for 1 h. The mother liquor was decanted at 0 °C and the residue was dissolved in cold (0 °C) MeCN (0.4 mL). The amount of C₆F₅IF₂ (0.08 mmol), IF₅ (0.06 mmol), and C₆F₅I (0.06 mmol) was determined from both solutions by ¹⁹F NMR (C₆F₆ as quantitative integral standard).

3.5.3. Reaction of 2,2,2-trifluoroethyliodine tetrafluoride with IF₇

A cold (0 °C) solution of CF₃CH₂IF₄ (0.10 mmol) in PFB (0.12 mL) was added to a cold (-30 °C) solution of IF₇ (0.10 mmol) in PFP (0.30 mL). After stirring at 25 °C for 16 h the solution showed no reaction (¹⁹F NMR).

3.5.4. Reaction of pentafluorophenyliodine tetrafluoride with $[O_2][SbF_6]$

Salt [O₂][SbF₆] (148 mg, 0.55 mmol) was added to the cold (-65 °C) stirred suspension of C₆F₅IF₄ (99 mg, 0.26 mmol) in aHF (2 mL). The suspension was stirred at -30 °C (1 h) and at 0 °C (1 h). A probe of the mother liquor showed only ¹⁹F NMR signals of C₆F₅IF₄ and aHF. The suspension was extracted with dichloromethane (1 mL) at 0 °C. The extract contained C₆F₅IF₄ (nearly quantitative recovery) (¹⁹F NMR).

3.5.5. Reaction of 2,2,2-trifluoroethylliodine tetrafluoride with $[O_2][SbF_6]$ in basic HF

A cold $(-20 \,^{\circ}\text{C})$ solution of CF₃CH₂IF₄ (0.24 mmol) and KF (0.48 mmol) in aHF (2 mL) was added to a cold (-65 $^{\circ}\text{C}$) stirred suspension of $[O_2][SbF_6]$ (117 mg, 0.43 mmol) in aHF (3 mL). The suspension was warmed to 24 $^{\circ}\text{C}$ within 2 h and formed a colorless solution which was stirred for further 24 h. The quantity of CF₃CH₂IF₄ did not change (¹⁹F NMR, 0 $^{\circ}\text{C}$).

3.5.6. Reaction of 2,2,2-trifluoroethylliodine with $[O_2][SbF_6]$ in basic HF

A 11.7-mm i.d. PFA trap equipped with a magnetic stir bar was charged with $[O_2][SbF_6]$ (157 mg, 0.58 mmol) and cooled to 0 °C before aHF (3 mL) was added. After cooling the solution to -65 °C a cold (-55 °C) solution of KF (153 mg, 2.63 mmol) in aHF (0.6 mL) was added. A suspension was formed which was stirred at -65 °C for 40 min. CF₃CH₂I (24 mg, 0.11 mmol) was injected. The suspension was stirred at -65 °C (40 min), -40 °C (15 min), and -20 °C (20 min). When deposited in an ice bath the suspension transformed into a colorless solution. After 1 h a probe contained CF₃CH₂I and CF₃CH₂IF₄ (78:22) (¹⁹F NMR, 0 °C).

3.5.7. Reaction of 2,2,2-trifluoroethylliodine tetrafluoride with $K_2[NiF_6]$ in basic HF

A cold (0 °C) solution of CF₃CH₂IF₄ (0.2 mmol) in aHF (0.3 mL) was added to a cold (0 °C) stirred deep-purple solution of K₂[NiF₆] (80 mg, 0.31 mmol) and KF (18 mg, 0.31 mmol) in aHF (0.5 mL). Immediately a pale-brown precipitate was formed. After centrifugation at 0 °C, the colorless mother liquid was decanted. It contained CF₃CH₂IF₄, IF₅, CF₃CH₂F, and CF₃CHF₂ (100:262:31:23) (¹⁹F NMR). The precipitate became greenish-yellow when residual HF was evaporated.

3.6. Fluorine addition to "non" polarized C=C double bonds in perfluoroolefins with IF_7

3.6.1. Reaction of perfluorohex-1-ene with IF7

A cold $(-65 \,^{\circ}\text{C})$ solution of C₄F₉CF=CF₂ (0.10 mmol) in PFP (0.17 mL) was added to a cold $(-65 \,^{\circ}\text{C})$ solution of IF₇ (0.10 mmol) in PFP (0.30 mL). The solution was stirred at $-60 \,^{\circ}\text{C}$ for 2 h (no

reaction, ^{19}F NMR). Further stirring at $-30\ ^\circ C$ for 2 h showed the quantitative formation of IF5 and C₆F₁₄ (1:1, ^{19}F NMR).

3.6.2. Reaction of perfluoro-4-methylpent-2-ene with IF₇

A cold $(-30 \,^{\circ}\text{C})$ solution of $(CF_3)_2CFCF=CFCF_3$ (**31**) (*cis:trans* = 12:88) (0.10 mmol) in PFP (0.14 mL) was added to a cold $(-25 \,^{\circ}\text{C})$ solution of IF₇ (0.10 mmol) in PFP (0.30 mL). The solution was stirred at $-30 \,^{\circ}\text{C}$ for 2 h (no reaction, ¹⁹F NMR), at 24 $^{\circ}\text{C}$ for 1 h (6% conversion of **31**), 16 h (60% conversion of **31**), and 27 h (74% conversion of **31**). After overall 60 h of reaction the solution contained perfluoroisohexane and IF₅ besides traces of **31**, (CF₃)₂CFCOF (34.2 (septet ⁴J(F¹, CF₃) = 6 Hz, d ³J(F¹, F²) = 22 Hz, 1F, F¹), -73.5 (d ³J(F³, F²) = 8 Hz, d ⁴J(CF₃, F¹) = 6 Hz, 6F, CF₃), -180.0 (septet ³J(F², CF₃) = 8 Hz, d ³J(F², F¹) = 22 Hz, 1F, F²) ppm (cf. [37])) CF₃COF (15.8 (q ³J(F¹, F²) = 6 Hz, 1F, F¹), -74.0 (d ³J(F², F¹) = 6 Hz, 3F, F²) ppm (cf. [38]), (CF₃)₂CO (-86.0 (s) ppm (cf. [38]), and C₂F₅COF (24.8 (t ³J(F¹, F²) = 9 Hz, q ⁴J(F¹, F³) = 5 Hz, 1F, F¹), -82.5 (d ³J(F³, F¹) = 5 Hz, t ³J(F³, F²) = 2 Hz, 3F, F³), -120.9 (q ³J(F², F³) = 2 Hz, d ³J(F², F¹) = 9 Hz, 2F, F²) (cf. [39])) (¹⁹F NMR).

 $\begin{array}{l} (CF_3)_2 CFC_3 F_7 \left(\textbf{33} \right). {}^{19} F \ NMR \ (PFP, 0 \ ^\circ C): \ \delta \ -71.1 \ (d \ 6 \ Hz, t \ 8.5 \ Hz, t \ 11 \ Hz, 6F, 2CF_3), \ -79.8 \ (t \ 12 \ Hz, 3F, F^5), \ -114.4 \ (m, 2F, F^3), \ -124.1 \ (m, 2F, F^4), \ -185.1 \ (m, 1F, F^2). \ \{lit. \ \delta \ -73 \ (2CF_3), \ -82 \ (1CF_3), \ -115 \ (2F, F^3), \ -124 \ (2F, F^4), \ -185 \ (1F, F^2) \ [40]; \ -72.3 \ (2CF_3), \ -81 \ (1CF_3), \ -115 \ (2F, F^3), \ -125 \ (2F, F^4), \ -185.5 \ (1F, F^2) \ [41]\}. \end{array}$

4. Conclusions

PFP and PFB are suitable solvents for IF₇. They withstand the oxidation property of IF₇ and allow to investigate the reactivity of IF7 towards organoelement and organo compounds. Two promising routes to hitherto unknown R_FIF₆ were investigated, but without positive result concerning the goal. Instead, insight into the reactivity of IF7 towards polyfluoroorganoelement compounds was obtained. The substitution of F by C₆F₅ which was successful in case of HalF_n (Hal = Br, I; n = 3, 5) and XeF_n (n = 2, 4) comes in case of IF₇ to a preparative limitation: the rate of substitution decreases with increasing oxidation number (n) of iodine and parallel to n the oxidation power of $HalF_n$ increases. Principally, the C₆F₅ group offers relatively high nucleophilicity in combination with acceptable resistance to oxidizers. But this group can undergo fluorine addition to the C=C bonds under the action of IF₇. The alternative route to R_FIF₆ molecules, the fluorine addition to iodine in the corresponding precursors $C_6F_5IF_4$ and $CF_3CH_2IF_4$ did not lead to the target molecule R_FIF₆. [O₂][SbF₆]/HF is a no efficient fluoro-oxidizer for C₆F₅IF₄. IF₇/PFP attacks the C=C bonds of C₆F₅IF₄. CF₃CH₂IF₄ is inert to IF₇ in PFP/PFB and [O₂][SbF₆] in aHF. Furthermore, CF₃CH₂IF₄ does not lead to the target molecule CF₃CH₂IF₆ with K₂[NiF₆] under increased oxidizing conditions in "basic" aHF.

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank Prof. H. Willner, Prof. B. Müller, and Dr. E. Jacob for providing us with chemicals.

References

- [1] O. Ruff, R. Keim, Z. Anorg. Allg. Chem. 193 (1930) 176-186.
- [2] I.V. Nikitin, Halogen Fluorides and Oxyfluorides, Nauka, Moscow, 1989, pp. 59–61 (in Russian).
- [3] K.O. Christe, W.W. Wilson, R.D. Wilson, Inorg. Chem. 28 (1989) 904–908.
- [4] K.O. Christe, J.C.P. Sanders, G.J. Schrobilgen, W.W. Wilson, J. Chem. Soc., Chem. Commun. (1991) 837–840.
- [5] J.F. Lehmann, G.J. Schrobilgen, K.O. Christe, A. Kornath, R.J. Suontamo, Inorg. Chem. 43 (2004) 6905–6921.
- [6] (a) K. Seppelt, in: J.S. Thrasher, S.H. Strauss (Eds.), Inorganic Fluorine Chemistry Toward the 21st Century, ACS Symposium Series, vol. 555, American Chemical Society, Washington, 1994, pp. 56–65;

- (b) K.O. Christe, E.C. Curtis, D.A. Dixon, H.P.A. Mercier, J.C.P. Sanders, G.J. Schrobilgen, W.W. Wilson, in: J.S. Thrasher, S.H. Strauss (Eds.), Inorganic Fluorine Chemistry Toward the 21st Century, ACS Symposium Series, vol. 555, American Chemical Society, Washington, 1994, pp. 66–89.
- [7] K.O. Christe, E.C. Curtis, D.A. Dixon, J. Am. Chem. Soc. 115 (1993) 1520-1526.
- [8] N. Bartlett, S. Beaton, L.W. Reeves, E.J. Wells, Can. J. Chem. 42 (1964) 2531-2540.
- [9] H.-J. Frohn, K. Schrinner, Z. Anorg. Allg. Chem. 623 (1997) 1847–1849.
- [10] W. Breuer, H.-J. Frohn, J. Fluorine Chem. 47 (1990) 301-315.
- [11] H.-J. Frohn, Chem. Ztg. 108 (1984) 146-147.
- [12] H.-J. Frohn, M. Giesen, J. Fluorine Chem. 24 (1984) 9-15.
- [13] W. Breuer, H.-J. Frohn, J. Fluorine Chem. 34 (1987) 443–451.
- [14] H.-J. Frohn, M. Giesen, D. Welting, V.V. Bardin, J. Fluorine Chem. 131 (2010) 922-932.
- [15] H.-J. Frohn, V.V. Bardin, J. Organomet. Chem. 501 (1995) 155-159.
- [16] H.-J. Frohn, V.V. Bardin, unpublished results.
- [17] H.-J. Frohn, M.E. Hirschberg, A. Wenda, V.V. Bardin, J. Fluorine Chem. 129 (2008) 459–473.
- [18] H.-J. Frohn, M. Giesen, V.V. Bardin, J. Fluorine Chem., in press, http://dx.doi.org/ 10.1016/j.jfluchem.2010.06.022.
- [19] (a) H.-J. Frohn, V.V. Bardin, Organometallics 20 (2001) 4750-4762;
- (b) H.-J. Frohn, V.V. Bardin, in: K.K. Laali (Ed.), Recent Developments in Carbocation and Onium Ion Chemistry, ACS Symposium Series, vol. 965, American Chemical Society, Washington, 2007, pp. 428–457.
- [20] H.-J. Frohn, H. Franke, P. Fritzen, V.V. Bardin, J. Organomet. Chem. 598 (2000) 127– 135.
- [21] F. Bailly, P. Barthen, H.-J. Frohn, M. Köckerling, Z. Anorg. Allg. Chem. 626 (2000) 2419–2427.

- [22] H.-J. Frohn, A. Wenda, U. Flörke, Z. Anorg. Allg. Chem. 634 (2008) 764-770.
- [23] H.-J. Frohn, V.V. Bardin, J. Fluorine Chem. 126 (2005) 1036-1043.
- [24] T.J. Richardson, F.L. Tanzella, N. Bartlett, J. Am. Chem. Soc. 108 (1986) 4937-4943.
- [25] G.M. Lucier, C. Shen, S.H. Elder, N. Bartlett, Inorg. Chem. 37 (1998) 3829-3834.
- [26] V.V. Bardin, J. Fluorine Chem. 89 (1998) 195-211.
- [27] V.V. Bardin, L.S. Pressman, V.F. Cherstkov, Synth. Commun. 25 (1995) 2425-2433.
- [28] S.F. Campbell, A.G. Hudson, E.F. Mooney, A.E. Pedler, R. Stephens, K.N. Wood, Spectrochim. Acta 23A (1967) 2119-2125.
- [29] H.-J. Frohn, M.E. Hirschberg, R. Boese, D. Bläser, U. Flörke, Z. Anorg. Allg. Chem. 634 (2008) 2539–2550.
- [30] G.V.D. Tiers, H.A. Brown, T.S. Reid, J. Am. Chem. Soc. 75 (1953) 5978-5979.
- [31] H.-J. Frohn, V.V. Bardin, Z. Anorg. Allg. Chem. 627 (2001) 2499–2505.
- [32] H.-J. Frohn, M. Giesen, A. Klose, A. Lewin, V.V. Bardin, J. Organomet. Chem. 506 (1996) 155–164.
- [33] V.V. Bardin, L.S. Pressman, L.N. Rogoza, G.G. Furin, J. Fluorine Chem. 53 (1991) 213–231.
- [34] H.-J. Frohn, S. Görg, G. Henkel, M. Läge, Z. Anorg. Allg. Chem. 621 (1995) 1251–1256.
- [35] A.A. Kolomeitsev, F.U. Seifert, G.-V. Röschenthaler, J. Fluorine Chem. 71 (1995)
- 47–49. [36] H.-J. Frohn, V. Bilir, unpublished results.
- [37] J.T. Hill, J. Fluorine Chem. 9 (1977) 97–112.
- [38] S. Berger, S. Braun, H.-O. Kalinowski, NMR-Spektroskopie von Nichtmetallen 4. ¹⁹F-NMR-Spektroskopie, Thieme, Stuttgart, 1994, S.19.
- [39] N.V. Ignat'ev, M. Schmidt, U. Heider, A. Kucherina, P. Sartori, F.M. Helmy, J. Fluorine Chem. 113 (2002) 201–205.
- [40] R.D. Dresdner, F.N. Tlumac, J.A. Young, J. Am. Chem. Soc. 82 (1960) 5831–5834.
 [41] S.P.v. Halasz, F. Krause, T. Martini, Chem. Ber. 106 (1973) 2950–2959.